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ABSTRACT
The task of a deep learning (DL) program is to train a model with
high precision and apply it to different scenarios. A DL program
often involves massive numerical calculations. Therefore, the ro-
bustness and stability of the numerical calculations are dominant
in the quality of DL programs. Indeed, numerical bugs are common
in DL programs, producing NaN (Not-a-Number) and INF (Infinite).
A numerical bug may render the DL models inaccurate, causing
the DL applications unusable. In this work, we conduct the first
empirical study on numerical bugs in DL programs by analyzing
the programs implemented on the top of two popular DL libraries
(i.e., TensorFlow and PyTorch). Specifically, We collect a dataset
of 400 numerical bugs in DL programs. Then, we classify these
numerical bugs into nine categories based on their root causes and
summarize two findings. Finally, we provide the implications of our
study on detecting numerical bugs in DL programs.
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 1  def log_probability(x, action): 

 #      ...... 

 2 alpha = tf.reshape(tensor=alpha, shape=shape) 

 3 beta = tf.reshape(tensor=beta, shape=shape) 

 4 sum = alpha + beta 

 5 - log_norm = tf.lgamma(alpha) + tf.lgamma(beta) –               

 6 -  tf.lgamma(sum)                                          

 7 + log_norm = tf.lgamma(alpha + epsilon) + tf.lgamma(          

 8 +   beta + epsilon) - tf.lgamma(sum + epsilon)    

9 return (alpha - 1.0) * tf.log(action + epsilon) +  

10  (beta - 1.0) * tf.log1p(-action) - log_norm 

 

Figure 1: A numerical bug caused by tf.lgamma()
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1 INTRODUCTION
In recent years, with the increasing development of deep learning
(DL) in various areas (e.g., autonomous driving [7]), we are entering
an era of Artificial Intelligence. The life cycle of a DL application can
be divided into three phases: programming phase, training phase,
and deployment phase. Specifically, developers need to design and
implement the neural network into DL programs, and the DL model
can be obtained by conducting the training procedure on the train-
ing set. Thus, the bugs that appear in the programming phase can
seriously threaten the quality and safety of DL applications. To date,
substantial recent studies [11, 19–21] have illustrated that testing
DL programs are critical.

Among the common defects in DL programs, numerical bugs
are one of the most prominent categories, as DL programs have a
heavy presence of numerical computation [18, 19]. Numerical bugs
come out in the form of NaN or INF, where NaN denotes that the
value is Not a Number and INF denotes an infinite number. For ex-
ample, NaN or INF can occur when divided-by-zero happens during
computation. Once a NaN or INF appears during computation, the
wrong values will affect the final output through value propagation.
Due to the randomness and complexity of DL, numerical bugs in
DL programs may not appear in the early stage of the training
procedure but are exposed after lengthy training. Thus, developers
can spend a lot of time detecting and debugging numerical bugs in
DL programs, which obviously slows down the development cycle
of DL applications.

https://doi.org/10.1145/3551349.3559561
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Figure 1 presents a simplified case of a numerical bug in a Ten-
sorFlow program from our study, in which a NAN value appears
in the return value of a function log_probability() at line 9. In
this code snippet, the NAN value first appears after the operation
tf.lgamma() in line 5. Then, it is continuously propagated dur-
ing the training process, leading to an invalid calculation result.
The above bug can be fixed by adding a small epsilon value to the
operands of tf.lgamma().

In this work, we conduct the first empirical study to facilitate the
understanding of numerical bugs in DL programs. In particular, we
analyzed DL programs based on two mainstream DL libraries (i.e.,
TensorFlow and PyTorch). Specifically, we collected issues or posts
related to numerical bugs from GitHub, Stack Overflow, and PyTorch
Forums and built a dataset consisting of 400 issues/posts through
our manual inspection. We divided the root causes of numerical
bugs into code relevant (bugs caused by developers’ incorrect im-
plementation in programming) and code irrelevant (bugs caused
by incorrect configurations or other external factors), and further
categorized them into nine categories. We then analyzed their dis-
tributions and summarized the corresponding fixed patterns. Our
analysis presents two findings to provide a better understanding of
the numerical bugs in DL programs, e.g., the most dominant kind
of numerical bug is caused by Invalid Range (IR) in mathematical
operations(e.g., an exp()API call with a parameter greater than 88),
while fewer bugs are caused by Code Logic Error. To motivate future
research on numerical bugs in DL programs, we then provided a
series of implications in Section 3.

In summary, the contributions of this work are as follows:

• We conduct the first empirical study on numerical bugs based
on 400 bugs in real-world DL applications on TensorFlow
and PyTorch.

• We provide a classification of root causes of numerical bugs
in DL programs and some fix patterns.

• We release the collected dataset containing 400 real-world
numerical bugs [2].

2 EMPIRICAL STUDY
We conduct an empirical study to comprehensively understand nu-
merical bugs in DL programs. In the study, we aim to categorize the
root causes of these bugs, analyze their distribution, and summarize
our findings. Moreover, we discuss the challenges of exposing these
bugs.

2.1 Data Collection
Our study considered numerical bugs in DL programs based on the
twomost popular DL libraries, i.e., TensorFlow [6] and PyTorch [14],
which are widely used in the development of DL programs while
differing in computation manners. TensorFlow adopts static com-
putation graphs, in which the neuron network is built before the
training process, while PyTorch computes the neuron network dy-
namically in training time. We collected potential bugs from two
data sources, i.e., GitHub issues and forum posts.

For GitHub issues, we first collected all the repositories contain-
ing the label TensorFlow or PyTorch. Then, we collected all the closed
issues with at least one reply and contain the keywords NaN or INF

from these repositories. In this way, we collected 580 TensorFlow
issues and 483 PyTorch issues as potential numerical bugs.

Regarding forum posts, TensorFlow and PyTorch have their own
commonly-used forums respectively. The forum of TensorFlow is
Stack Overflow [4], which is officially recommended by TensorFlow
developers [5], while that of PyTorch is PyTorch Forums [3], which is
also the official forum of PyTorch. From Stack Overflow and PyTorch
Forums, we collected all the posts that contain the keywords NaN
or INF and have an accepted answer. From Stack Overflow, the posts
should be tagged with TensorFlow. In this way, we collected 323
TensorFlow posts and 400 PyTorch posts as potential numerical
bugs.

Since not all of these collected issues and posts are really numeri-
cal bugs, we further conductedmanual analysis by two authors. One
author is responsible to analyze TensorFlow issues and posts, while
another author is responsible to analyze PyTorch issues and posts.
Before independently labeling the data, the two authors jointly in-
vestigated a subset of issues/posts from the entire raw dataset and
determined the initial set of categories. They randomly selected 100
issues/posts and conducted manual analysis together. If the issue or
post is not a numerical bug, it is discarded; otherwise, the authors
further analyze the root cause and fix pattern of the numerical bug.

After obtaining the initial set of categories, they start to classify
the bugs independently. Please note that if one issue or post is found
to not belong to any initial category, the two authors will discuss
and determine whether to add a new category. Once obtaining 100
valid numerical bugs for each library under each data source, this
step is terminated. Then, they exchanged and checked their analysis
results with each other for the obtained valid numerical bugs in
order to guarantee the accuracy of manual analysis. Please note that
if there is a disagreement between them for a valid numerical bug,
the third author is invited for discussion. If they still cannot reach
an agreement after discussion, this numerical bug is discarded. In
this step, seven issues and two posts are required for discussion,
and no one is discarded after tripartite discussion. Finally, we had
400 valid numerical bugs in our study, including 100 TensorFlow
issues, 100 TensorFlow posts, 100 PyTorch issues, and 100 PyTorch
posts.

2.2 Root Causes of Numerical Bugs
To better understand the types of numerical bugs in DL programs,
we classified their root causes into nine categories of two broad
categories and summarized the corresponding fix patterns in each
category. Table 1 presents the nine categories of root causes and
their distribution in detail. In this table, TI, TP, PI, PP are short for
TensorFlow Issues, TensorFlow Posts, PyTorch Issues, and PyTorch
Posts respectively. The last column calculates the proportion of
each category of bugs to the corresponding broad category. Ac-
cording to whether the numerical bugs are caused by developers’
implementation in programming or not, we first categorized their
root causes into two broad categories, i.e., code relevant bugs and
code irrelevant bugs. Note that there are four bugs belonging to
Other in Table 1 since they were fixed by directly filtering NaN
without pointing out real root causes in the issue reports.

2.2.1 Code Relevant Bugs. Code relevance bugs are caused by de-
velopers’ incorrect implementation in programming, which is more
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Table 1: The distribution of root causes in numerical bugs

Type Root Cause # TI # TP # PI # PP # Total Proportion(%)

Code
Relevant

IR 21 29 22 21 93 50.82%
APIM 8 8 7 12 35 19.13%
IDP 7 4 7 9 27 14.75%
IFPT 6 4 4 3 17 9.29%
CLE 1 2 3 5 11 6.01%

Code
Irrelevant

GE 20 27 28 15 90 42.25%
RE 15 3 10 20 48 22.54%
BI 12 9 8 10 39 18.31%
IMC 7 14 10 5 36 16.90%

Other 3 0 1 0 4 -

Table 2: Invalid Range numerical bugs

Math Function Invalid Range

div(y, x ) x = 0
exp(x ) x > 88

expm1(x ) x > 88
log1p(x ) x + 1 <= 0
log(x ) x <= 0
sqrt(x ) x <= 0
acos(x ) x = 1 ∨ x = −1

lgamma(x ) x ∈ {0,−1,−2, ...,−in f }

  # ......
  # define x,y as input and output placeholder
  # define w,b as model weights
  out = x * w + b
- y_pred = tf.reduce_sum(out, axis=1, name='out')
+ y_pred = tf.reduce_sum(out, axis=1, name='out',keep_dims=True)
sub_res = y_pred – y
square_res = tf.square(sub_res)
# Loss as sum(error^2)

- loss = tf.reduce_sum(square_res, name='loss')
+ loss = tf.reduce_sum(square_res, name='loss',keep_dims=True)

  # ......

1
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11
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Figure 2: APIM bug reported by a TensorFlow post

complicated and requires modifying the source code to fix. In our
study, 45.75% of numerical bugs belong to this broad category. The
root causes of the bugs in this broad category are further divided
into five categories, including API Misuse, Code Logic Error, Incor-
rect Floating Point Type, Incorrect Data Preprocessing, and Invalid
Range.
Invalid Range (IR). This category of bugs arises when invalid
values are used in mathematical functions. For example, zero is
invalid for division and non-positive values are invalid for log
function. Based on our study, we summarized the mathematical
functions that often trigger IR bugs, and the corresponding invalid
ranges in Table 2. In particular, some valid values for mathematical
functions may still lead to numerical bugs. For example, zero is a
valid value for the square root function but if we try to calculate its
derivative at zero, NaN is induced. The fix pattern of IR bugs is to
add an extremely small value to the variables used in mathematical
functions or clip the values into valid ranges.
API Misuse (APIM). This category of bugs arises as developers do
not fully understand the used APIs, and hence mess up the order of
parameters or miss parameters, etc. As shown in Fig. 2, due to miss-
ing the parameter keep_dims=True in the API tf.reduce_sum, the
produced shape of y_pred is different from that of y, causing the
broadcast mechanism in NumPy is triggered and then the loss is
increased sharply. With the abnormal loss accumulating during
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  # ......
  all_labels  = genfromtxt('oh_labels.csv', delimiter=',')
  num_examples = all_labels.shape[0]
  dataset, all_labels = shuffle_examples(dataset, all_labels)

  # Split dataset into training (66%) and test (33%) set
  training_set_size = 2000
  mini_batch_size = 100
  training_set = dataset[0:training_set_size]
  training_labels = all_labels[0:training_set_size]
- total_batch = int(num_examples/mini_batch_size)
+ total_batch = int(training_set_size / mini_batch_size)
  # ......

  for i in range(total_batch):
   # example loading
   minibatch_x = training_set[i*mini_batch_size:

   (i+1)*mini_batch_size]
   minibatch_y = training_labels[i*mini_batch_size:

   (i+1)*mini_batch_size]
   # ......

Figure 3: CLE bug reported by a TensorFlow post

the process of back-propagation, the program eventually outputs
NaN. Among the 35 APIM bugs in our study, 16 bugs were fixed
by replacing the wrong APIs with the correct ones and 19 bugs were
fixed by changing the parameters in APIs.
Incorrect Data Preprocessing (IDP). This category of bugs arises
due to incorrect data preprocessing. In particular, missing or re-
peated data normalization is the most common reason for leading
to NaN in this category. For example, when the data is not nor-
malized, the values in the data can be too large for the network to
normally train the model, leading to NaN eventually. Among the 27
IDP bugs in our study, 13 bugs were fixed by correctly conducting
data normalization, while others were fixed by removing abnormal
data or changing the data processing method.
Incorrect Floating Point Type (IFPT). This category of bugs
arises when an incorrect floating-point type is used. Taking an
example shown in Fig. 4, the hard coding of the maximum and
minimum values could be out of range in float16, leading to NaN.
Another example is that training with some optimizers (such as
Adam [13]) in float16may result in numerical instability and thus
get NaN results. To fix IFPT bugs, developers need carefully check if
there are incorrect floating-point types that should be replaced with
the correct ones or distinguished for special consideration.
Code Logic Error (CLE). This category of bugs occurs when de-
velopers mistakenly implement the functionality. For example,
as shown in Fig. 3, total_batch (the number of batches in the
training set) should be calculated by dividing training_set_size
by mini_batch_size. However, developers mistakenly divided
num_examples (the total number of inputs in both the training
set and the test set) by mini_batch_size. Then, an empty batch is
returned when the index for training_set exceeds its boundary
due to this bug, which eventually leads to NaN of loss. For CLE
bugs, it is hard to summarize their fix patterns as code logic could
be wrong in various forms.

2.2.2 Code Irrelevant Bugs. Bugs of this type are caused by incor-
rect configurations or other external factors rather than developers’
implementation in programming. In our study, 53.25% of numerical
bugs belong to this broad category. The root causes of the bugs in
this broad category are further divided into four categories, i.e., Bad
Inputs, Improper Model Configuration, Runtime Environment, and
Gradient Explosion.
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- attn_score = attn_score.float().masked_fill(
- attn_mask[None,:,:,None], -1e30).type_as(attn_score)
+ if next(self.parameters()).dtype == torch.float16:
+ attn_score = attn_score.float().masked_fill(
+ attn_mask[None,:,:,None], -65000).type_as(attn_score)
+ else:
+ attn_score = attn_score.float().masked_fill(
+ attn_mask[None,:,:,None], -1e30).type_as(attn_score)

1
2
3
4
5
6
7
8

Figure 4: IFPT bug reported by a PyTorch GitHub issue

Gradient Explosion (GE). This is a special category since gradi-
ent explosion is actually an immediate flashpoint of this category
of bugs rather than the root cause. Gradient explosion refers to
that, an error gradient is used to update the network weights and
continues accumulating errors during the training process, and
finally the gradient becomes extremely large, leading to the nu-
merical overflow of weights. However, in the issues/posts of these
bugs, they directly pointed out that these numerical bugs are the
problem of gradient explosion, and then instantly fixed them by
either clipping the gradients of intermediate variables or tuning the
learning rate. As discussed by developers, such fixing methods may
not fix these numerical bugs fundamentally but effectively avoid
them within limited iterations.
Runtime Environment (RE). This category of bugs are caused
by third-party libraries (e.g., cuDNN, TensorFlow, and PyTorch) or
hardware (e.g., CPU and GPU). Updating the versions of libraries or
replacing the hardware device can fix RE bugs. Among the 48 RE
bugs in our study, 34 bugs were fixed by the former and 14 bugs
were fixed by the latter. We used two examples to further illustrate
RE bugs. The first one is that a user came across NaN during training
ResNet-18 with ImageNet. After deep analysis, she/he finally found
the reason lies in the old version of cuDNN [1]. In the second one,
a user spent a month discussing with others a numerical bug in
her/his post, and finally solved the problem by sending the GPU
card back to the manufacturer.
Bad Inputs (BI). This category is caused by ill-formed inputs. For
example, when an input itself contains NaN, it must lead to NaN
during program execution. Also, when the mapping between data
and labels is wrong, it may cause numerical bugs. Interestingly, we
also found that the format of images could cause numerical bugs.
For example, a user used OpenCV to generate images in the JPEG
format as the training set. However, JPEG is a lossy compression
standard method for images, which could lose annotation informa-
tion in images. In the meanwhile, OpenCV can reduce the quality
of images in JPEG by default, and thus such loss eventually leads
to a numerical bug. For BI bugs, modifying or discarding bad inputs
(23 out of 39 bugs) and correcting the map between data and labels
are two most common fix patterns.
Improper Model Configuration (IMC). This category is caused
by improper model structure or parameters. Therefore, the fix pat-
tern of IMC bugs is to modify the improper components of a network.
Among the 36 IMC bugs in our study, 17 bugs were fixed by mod-
ifying the activation function, loss function, or optimizer of the
network, and four bugs were fixed by modifying the network struc-
ture, and 15 bugs were fixed bymodifying the network’s parameters
and the initialization of weights. For example, a user did not stan-
dardize data and adopted the SGD optimizer, leading to a numerical
bug. This is because the SGD optimizer cannot perform well on
such non-standardized data.

3 IMPLICATIONS
Detecting various types of bugs. Existing numerical bug detec-
tion techniques [18, 22] for DL programs just target IR bugs. Ac-
cording to our study, IR bugs only account for 23.25% of all the
studied numerical bugs, which is the most common but still lim-
ited. Hence, it is necessary to propose more techniques to handle
other types of numerical bugs. For example, GE bugs also occupy a
significant proportion (22.5%) and it is possible to handle GE bugs
by modifying hyper-parameter values and gradient clipping.
Investigating code relevant bugs. In our study, code relevant
bugs account for 55.65%, most of which can be fixed by replacing
API or clipping the parameter values into a valid range. There is
an opportunity that mines the frequent patterns occurring with
numerical bugs. For instance, an envisioned technique can focus
on detecting code relevant numerical bugs based on these patterns.
Cross-hardware differential testing. According to our study,
several numerical bugs (12%) are caused by incompatible hardware
devices or iterations of DL libraries. Therefore, researchers can
systematically reveal the inconsistencies generated by the same
model in different environments by designing a differential testing
framework, thereby finding more numerical bugs in DL programs.

4 RELATEDWORK
Deep learning and deep neural network have been widely tested [8–
10, 15–17]. Besides, there are a number of empirical studies on DL
application bugs [11, 12, 20, 21]. Islam et al. [11] analyzed 2,716
Stack Overflow posts and 500 GitHub bug commits on five popular
deep learning libraries to learn the root causes and impacts of DL
bugs. They also analyzed the challenges of automated bug repair
tools [12]. Zhang et al. [20] presented an empirical study on 715
questions collected from Stack Overflow and provided challenges in
developing deep learning applications. Zhang et al. [21] studied DL
applications built on TensorFlow and analyzed program bugs from
Stack Overflow posts or GitHub issues. These studies analyzed gen-
eral DL application bugs without deeply analyzing numerical bugs
in DL applications. Unlike them, we conducted the first empirical
study on DL numerical bugs by profoundly analyzing their root
causes and fix patterns. Besides, there are also research projects
on DL testing at other levels, such as model level [9, 17], library
level [8, 16], and compiler level [15].

5 CONCLUSION
We conduct the first empirical study of numerical bugs in deep
learning programs. In this study, we analyze 1,063 GitHub issues and
723 Stack Overflow posts and select 400 of them as our dataset. We
classify these numerical bugs into nine categories by analyzing their
root causes, and summarize some fix patterns for these categories.
Finally, we provide the implications of detecting numerical bugs in
deep learning programs according to our study findings.
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